
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RESOLVING LEXICAL BIAS IN EDIT SCOPING WITH
PROJECTOR EDITOR NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Weight-preserving large language model editing techniques rely heavily on scop-
ing mechanisms that determine when to apply edits to the base model. These
mechanisms typically use distance functions in the representation space. How-
ever, we demonstrate that distance-based scoping functions struggle with strong
lexical biases, leading to issues such as applying edits to irrelevant prompts with
overlapping words. This paper presents Projector Editor Networks for Model Edit-
ing (PENME), a principled approach that learns the optimal representation space
for scoping using contrastive learning. Specifically, PENME forms a disentan-
gled representation space that facilitates precise localization of edits by maintain-
ing substantial distance between irrelevant prompts while preserving proximity
among paraphrases. In our empirical study, we show PENME achieves state-of-
the-art model editing results while being more computationally efficient during
inference and adaptable across different architectures.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated tremendous success in solving a diverse range
of natural language processing tasks (Devlin et al., 2018; Liu et al., 2019; Touvron et al., 2023b;
Radford et al., 2019). Despite their successes, LLMs are fallible. One reason for this discrepancy is
the noisy and imperfect nature of the data used for training (Zhu et al., 2020). As the world evolves,
new information requires updates to the models e.g. the prime minister of a country may change
over time. Models trained on outdated data are prone to making factual errors.

Periodically retraining LLMs is one potential solution, but risks degrading performance, often re-
quiring training from scratch to maintain previous capabilities (Luo et al., 2023; Wang et al., 2023b).
Retraining requires significant computational resources, investment of time, data, and skilled labor.

To alleviate this, model editing was proposed to perform sample and compute efficient knowledge
updates. There are two primary model editing design paradigms: weight-modifying and weight-
preserving. Weight-modifying approaches directly update the model’s parameters to integrate new
information (Meng et al., 2022a;b). Although these approaches are sample efficient, they demand
substantial compute resources for training (Yu et al., 2024) and result in catastrophic forgetting
(Gupta et al., 2024a) the full impact of which is difficult to fully determine (Rosati et al., 2024).

In contrast, weight preserving approaches maintain the original model parameters while employ-
ing additional components to reflect updated knowledge, thereby avoiding catastrophic forgetting
(Hartvigsen et al., 2024; Yu et al., 2024). These methods either utilize user inputs and memory
storage before a forward pass of the model (pre-input) or during a forward pass (post-input). Pre-
input approaches (Mitchell et al., 2022; Zheng et al., 2023) rely on retrieving relevant contexts
for model editing, this process requires additional components such as retrievers and counterfactual
models which make them computationally intensive. Post-input mechanisms (Hartvigsen et al.,
2024; Yu et al., 2024) involve adapter-based editing techniques that incorporate components within
the model’s computational pathway, modifying its output to reflect edited information.

A core component of adapter-based techniques is a vector similarity scoping mechanism that utilizes
model representations and memory codebooks containing vector representations to determine when
to utilize computational paths associated with a given edit. However, we observe that adapter-
based techniques struggle with handling paraphrases and often misfire on irrelevant prompts with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of lexical dominance in embeddings: a) shows setting the similarity thresh-
old low (illustrated with the circle) which results in failing to edit paraphrases. b) shows setting the
similarity threshold high resulting in misfires with irrelevant prompts. c) illustrates the representa-
tion space that our projector network learns.

similar lexical content. This is in line with the findings of Dumpala et al. (2024) who examine the
impact of lexical diversity on model representations for semantically equivalent texts and showed
that their representations often exhibit divergence despite semantic equivalence. For example, the
representation for ”The twin city of Pittsburgh is” may exhibit greater similarity to ”The twin city
of Portsmouth is” than to its paraphrase ”Pittsburgh is a twin city of”.

Our work uniquely characterizes this problem (§6.1) leading to our novel finding that for model
editing, lexical factors predominantly shape model representations. Figure 7 shows that 58% of
edits from the Counterfact dataset (Meng et al., 2022a) were closer to unrelated neighbours than
the edit paraphrases using representational similarity measures. This result is misfiring of the scop-
ing mechanism i.e. inappropriately applying an edit. This phenomenon creates a trade-off between
effectively executing the correct editing mechanism on paraphrases and preventing misfires on irrel-
evant prompts. A low distance threshold, which controls the scoping mechanism, reduces misfires
but impedes paraphrase execution, while a higher threshold enhances paraphrase performance but
increases misfire risk as illustrated in Figure 1.

In this work, we introduce Projector Editor Networks for Model Editing (PENME), an advancement
over previous adapter-based weight preserving model editing by explicitly targeting the lexical bias
problem in these scoping mechanisms. PENME comprises of two key components: a projector
network and a similarity-based retrieval system. The projector network is a compact, two-layer
neural network trained independently using contrastive learning to disentangle projection space such
that paraphrases of edits demonstrate proximity, while irrelevant prompts, both with and without
similar lexical overlaps, are farther away. Based on the outputs of the projector network, a memory-
based retrieval system facilitates efficient edit retrieval. This approach effectively addresses the
aforementioned challenges, while maintaining computational efficiency and ensuring compatibility
with both encoder- and decoder-based architectures.

Our contributions are as follows: (1) We demonstrate that representations extracted across layers
from various LLMs exhibit lexical dominance, showing a bias towards token overlap which intro-
duces significant challenges for adapter-based model editing techniques. (2) We propose a projec-
tion network that maps the model’s representation space to a new representation space where lexical
dominance is minimized. (3) We integrate our projection network in an adapter and memory-based
retrieval scheme for model editing, demonstrating high efficacy for paraphrase execution (general-
ization), preventing misfires on irrelevant prompts (locality) and it’s generalization to unseen edits,
paraphrases, and neighbours. The proposed projection network is a novel solution to the problem in
hand. Moreover, It has broader impact to other application areas relying on representation similari-
ties such as retrieval augmented generation, however, it is out of the scope of this paper.

2 RELATED WORK

Weight-modifiying approaches typically rely on the localization hypothesis (Miller et al., 2016; Geva
et al., 2020) in the transformer architecture which conjectures pointwise feed-forward components
function similar to a key-value memory for information retention within a LLM (a hypothesis which
has recently been criticised w.r.t model editing in Hase et al., 2023). Meng et al. (2022a) identifies

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

salient neurons within the feed-forward layers, facilitating targeted updates to effect the desired edits
using causal analysis. Similarly, Li et al. (2024) investigates the role of multi-headed attention, in
conjunction with feed-forward layers, for model editing. Mitchell et al. (2021) uses a hypernetwork
to predict new weights for the model by using a low-rank decomposition of the weight matrices of
different layers. The goal is to edit information in the model parameters without impacting unrelated
information.

Weight Preserving: pre-input approaches depend on extracting and processing relevant edit infor-
mation before the input is processed by the main model. For example, SERAC (Mitchell et al., 2022)
employs a memory-based model editing strategy augmenting a primary LLM with two additional
models and memory storage. The supplementary models determine scope-of-edit and perform coun-
terfactual reasoning. Retrieval-augmented (RAG) techniques like IKE (Zheng et al., 2023) leverage
similarity-based retrieval to extract and rank edit demonstrations from memory and use in-context
reasoning to perform edits.

Weight preserving: post-input rely on the model’s internal representations to implement scoping
mechanisms (mechanisms which determine whether a specific edit applies for the current input) and
employ a playback mechanism that triggers the model to generate modified outputs. For example,
GRACE (Hartvigsen et al., 2024; Yu et al., 2024) operate an in-model adapter approach. These
approaches employ a codebook or memory storage system to maintain model representations of edits
as clusters. They utilize a vector similarity-based retrieval mechanism to generalize edit paraphrases
and constrain irrelevant or neighbouring prompts. Initial cluster sizes are deliberately restricted
to mitigate interference from neighbouring prompts and ensure that only paraphrases of the edit
prompt are mapped within the cluster. However, this design necessitates continuous cluster resizing,
as new edits with similar semantic and lexical properties may fall within an existing edit cluster.
Furthermore, the initially small cluster radius necessitates the storage of multiple edit paraphrases in
the memory codebook to achieve effective generalization, potentially leading to increased memory
consumption. The major difference in the approaches is that Hartvigsen et al. (2024) uses memory
playback vectors while Yu et al. (2024) uses LoRA blocks (Liu et al., 2024) for the generation
process. An alternative editing method involves enhancing the feedforward layer (FFN) within a
transformer block by incorporating additional neurons to facilitate the desired modifications. Huang
et al. (2023) introduce a single neuron per output token for edited information of single edit. In
this framework, each neuron, or a group of neurons, is specifically trained to activate solely for a
particular edit, thus adjusting the model’s output to produce the altered information.

Cluster-based similarity systems like GRACE and MELO Hartvigsen et al. (2024) and Yu et al.
(2024) rely on concept separability within the representation space to manually maintain keys in
their codebooks. However, our analysis reveals that lexically similar prompts cluster closer to ed-
its than their paraphrases, heightening the risk of system failure as can be seen from figure 1 and
3. Moreover, their cluster based design necessitates storing edit paraphrases as codebook entries
for effective generalization which increases retrieval latency. PENME overcomes this limitation by
learning a projection space that enhances representation structure, enabling more effective organiza-
tion of keys for faster and more accurate retrieval. Furthermore, PENME consistently outperforms
both weight-preserving and weight-modifying methods across various architectures, underscoring
its adaptability and efficacy.

3 PROBLEM SETTING: MODEL EDITING

The objective of model editing is to alleviate the need for complete retraining by updating the model
under the following conditions (1) sample efficiency: update the model with the fewest number of
samples possible, (2) compute efficiency: train a small portion of the model only, (3) minimal im-
pact: make as small of an impact on unrelated behaviour as possible (for adapter-based approaches
this means preventing misfires on irrelevant prompts) and (4) ensure generalization: maintain accu-
rate paraphrase behaviour (for adapter-based approaches this means retrieval of the correct edits).

The aim is to modify the behaviour of a model M on a dataset D = [d1, d2, d3...dn] where the
sample di is the tuple (xi, yi, [pi1, pi2...], [nbi2, nbi2, ..]). In this tuple, xi is the edit prompt, yi is the
new output tokens, p1..n are the edit paraphrase prompts, nb1..n are neighbours or neighbourhood
prompts these are lexically and semantically similar prompts but ones where the underlying model
generation should not change. To be successful in the model editing task, the edited model, Medited,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: PENME uses a projection network that interfaces with the pointwise feed-forward layer
output in a selected transformer block. This projection network, coupled with key-value codebook
storage, acts as a scoping mechanism by comparing projection outputs with codebook entries. This
mechanism determines whether the current input relates to a specific edit or should pass through the
model unmodified.

should generate new target tokens yi for a specific input xi (Edit Success) and its related paraphrases
p1..n (Generalization), while maintaining the model’s behaviour on semantically unrelated prompts
nb1..n (Locality). The following metrics illustrate how these factors are typically operationalized
(see for example Yao et al., 2023; Yu et al., 2024; Hartvigsen et al., 2024; Gupta et al., 2024b).

Edit Success (ES): The proportions of edits that the model is able to recall or generate correctly.
This metric has also been called efficacy, reliability, and edit score and is denoted as:

Medited(xi) = yi, ∀(xi, yi) ∈ d1:n (1)

Locality: The proportion of prompts concerning neighbouring entities unrelated to the edit for
which the model generates the same outputs prior to editing, this is also described as specificity,
neighbourhood success, retain rate and neighbourhood score. Denoted as:

Medited(nbij) = M(nbij), ∀nbij ∈ nbi,∀nbi ∈ d1:n. (2)

Generalization: The proportion of paraphrases for which the model is able to recall or generate
the correct edited information, also described as paraphrase success, paraphrase score:

Medited(pij) = yi, ∀pj ∈ pi,∀(pi, yi) ∈ d1:n. (3)

Score: The general score is the mean of the above three metrics used for benchmarking.

4 PROJECTOR EDITOR NETWORKS FOR MODEL EDITING (PENME)

PENME is a retrieval-based editor that leverages an adapter module which is integrated alongside
pointwise feed-forward layers within an attention block of a pre-trained Large Language Model
(LLM). By introducing this additional component rather than altering the original model weights,
PENME enables the integration of new information while preserving the LLM’s initial capabilities.

PENME illustrated in Figure 2 consists of two components, (1) Projection Network (Mproj): this
component projects model activations at a specific layer Ml(x) into a distinct representation space.
(2) Key-Value Codebook that stores model activations at layer Mproj(Ml(x)) as keys and cor-
responding values containing a learned similarity threshold (δ) and the new associated output in-
formation yi. It should be noted that instead of output information, vectors can also be stored as
values which facilitate playback approaches such as vector playback (Hartvigsen et al., 2024) and
LoRA blocks based playback (Yu et al., 2024). Output retrieval and playback are compatible with
all transformer-based model architectures.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 PROJECTION NETWORK

The projection network Mproj is a small feed-forward neural network trained via contrastive learn-
ing (Hadsell et al., 2006) with additional constraints, defined by the following loss function:

L(x⃗i, z⃗) = (1− t)
1

2
||x⃗i − z⃗||22 + t

1

2
[max(0,m− ||x⃗i − z⃗||2)2]

t =

{
1 if z⃗ ← p⃗ij ,

0 if z⃗ ← n⃗ij ∨ x⃗l

(4)

where t is the target {0, 1} which is 0 when the training pair is {xi, pij (edit,paraphrase) and 1
when {xi, nbij} (edit,neighbour) or the inter-edit (or edit-to-edit) pair {xi, xl} , m is the margin
which pushes n⃗ij at least m distance away from x⃗i. The projection network is trained such that
for all samples in a dataset, edits xi and edit paraphrases pij are close together while edits xi and
neighbours nbij are distanced in the projection space i.e. || ⃗Mproj

⃗(Ml(xi))− ⃗Mproj
⃗(Ml(pij)||2 ≪

|| ⃗Mproj
⃗(Ml(xi)) − ⃗Mproj

⃗(Ml(nbij)||2. Training is performed by sampling pairs at random and z⃗
in the loss function above is assigned based on the pair category we discussed earlier. The con-
ventional contrastive training for the projection network results in a suboptimal solution. The in-
herent lexical and semantic similarities among edits increase the probability of certain edit para-
phrases exhibiting greater proximity to other edits. This phenomenon can lead to erroneous
paraphrase-edit associations during execution, potentially triggering inappropriate edit operations.
To mitigate this issue, we propose an enhanced approach that incorporates an additional constraint
to maximize || ⃗Mproj

⃗(Ml(xi)) − ⃗Mproj
⃗(Ml(xl)||2 where xl is sampled from other edits in the

dataset. This results in increasing the inter-edit distances || ⃗Mproj
⃗(Ml(xi)) − ⃗Mproj

⃗(Ml(pij)||2 ≪
|| ⃗Mproj

⃗(Ml(xi)) − ⃗Mproj
⃗(Ml(xl)||2. This novel modification serves to expand the overall projec-

tion space, thereby reducing the likelihood of misclassification. The number of edit-to-edit pairings
is determined by the similarity between edits, which is controlled by a hyperparameter Φ.

The compact architecture of the projection network enables it to be trained on GPUs with limited
memory capacity, irrespective of the underlying model’s scale. We provide the details of implemen-
tation, data construction and training in Appendix A.

4.2 KEY-VALUE MEMORY

The key-value memory is designed to store edits and their corresponding outputs. For each edit,
representations are generated by passing the input xi through the model and the projection network.
This is denoted actxi = Mproj(Ml(xi)). These representations are then stored as keys ki ∈ K
in the memory and are utilized during runtime in a similarity-based retrieval system to access the
relevant edit. The memory value vi ∈ V consists of the edited information along with a similarity
threshold. The threshold serves as a scoping mechanism. For a given input prompt denoted pt,
euclidean distance || · ||2 is computed with all keys in the memory. From the computed distances,
we determine if the input prompt pt is relevant to the edited memory value vµi and its corresponding
threshold vδi . This is expressed as:

argmin
ki,vi

||actpt − ki||2

s.t.||actpt − ki||2 < viδ

(5)

If the prompt pt is deemed relevant based on the equation 5, the output information of the edit is
retrieved from memory vµi . Otherwise, the typical model output M(pt) is employed.

Initial experimental findings regarding the threshold reveal that unseen test paraphrases typically
demonstrate greater distance than the average seen training paraphrases, while the inter-paraphrase
distances within the training set exhibit variation across edits. In contrast, unseen test neighbours
generally show closer proximity to edits compared to the nearest seen training neighbour, this effect
is illustrated in greater detail in Appendix B. To determine an appropriate threshold that defines the
scope of an edit, we investigate various data-driven thresholding schemes based on the training data.

1. Max(||x⃗− p⃗ij ||2) + τ , setting τ distance away from max paraphrase distance

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2. Min(||x⃗− ⃗nbij ||2)− τ , setting τ distance below min neighbour value

The selection between the two alternatives is contingent upon the specific aspect of adjustment that
is prioritized. Option 2 maintains locality by preserving all training neighbours, while Option 1
assures that all training paraphrases will be operational regardless of the τ value selected. In Option
2, the final threshold, after adjustment with τ for certain edits, is set closer to the farthest paraphrase.
We opt for Option 1 in our experiments, as it guarantees a full edit success rate.

Edit Removal and Scalability: The scoping mechanism employed by Hartvigsen et al. (2024);
Yu et al. (2024) requires multiple paraphrases added to the codebook to improve generalization. To
enhance efficiency, merging operations are performed on nearby edits that produce identical outputs.
However, the efficacy of this consolidation is dataset-dependent; for example, zsRE demonstrates
a high frequency of similar edit outputs, enabling a significant reduction in codebook entries. For
example, 1000 edits on zsRE requires 658 entries in total but for Counterfact 1682 entries are needed
just for 300 edits. The combination of this consolidation process and the potential for edits to be
closely related in vector space leads to overlapping cluster radii, necessitating cluster size reduction.
This inadvertently results in the removal of certain edits. Thus edits can be forgotten. In contrast, our
method exhibits linear scaling with respect to the number of edits in the worst-case scenario where
each edit produces a unique output as exhibited in Appendix C. This characteristic allows for more
rapid edit retrieval compared to the aforementioned approach. Furthermore, our method facilitates
straightforward edit removal or updates, offering enhanced flexibility in edit management.

5 EXPERIMENTAL SETUP

We assess the performance of PENME across a spectrum of transformer-based LLMs including
Text-to-Text Transfer Transformer (specifically T5-small) (Raffel et al., 2020), Llama-2-7b (Tou-
vron et al., 2023a) and GPT2-XL (Radford et al., 2019). We compare PENME with We compare
PENME with GRACE and MELO, as these are weight-preserving approaches that closely align
with our methodology. Additionally, we include MEMIT and SERAC in the evaluation, as they high
performing techniques in model editing alongn with a baseline that uses PENME’s thresholding
system. The baseline is refered to as Defer. . Working details of the methods and hyperparameters
are provided in Appendix D.1. To select the optimal layer to introduce the PENME adapter, we
utilize the methodology outlined in section §6.1 and incorporate PENME in the second layer for all
LLMs. To determine the optimal threshold for each edit, we systematically vary the τ parameter in
Equation equation 2 across a range of 0.05 to 0.20.

Dataset The zsRE dataset (Levy et al., 2017) and the Counterfact dataset (Meng et al., 2022a)
are the commonly used model editing datasets for evaluation. The zsRE dataset consists of an edit
prompt along with several paraphrased versions of that prompt. To evaluate the impact of edits
on unrelated knowledge, neighbourhood prompts are sourced from the NQ dataset (Kwiatkowski
et al., 2019), which offers a wide range of user query questions. In contrast, Counterfact has similar
edit and paraphrase prompts but employs a more nuanced approach to neighbouring prompts. It
includes prompts that are similar to the edit prompt in both semantic nature and lexical structure.
This differs significantly from zsRE, where the neighbouring prompts are neither semantically nor
lexically related to the edit prompt. Moreover, zsRE has a lower spectrum of subjects, relationships,
and linguistic variations. This structural difference between the datasets has important implications
for evaluation. In zsRE, the lack of semantic or lexical relationships between the edit prompt and its
neighbours allows weight-preserving approaches to achieve high locality scores with relative ease.
The enhanced complexity of Counterfact renders it a more robust benchmark for evaluating editing
mechanisms. Dataset processing and training data construction details for both datasets are provided
in Appendix D.2.

6 EVALUATION

In this section, we present evidence of lexical dominance, the results of PENME in achieving sepa-
rability of unrelated neighbours and paraphrases, and comparison with other methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 5 6 9 10 13 17 20 23 27 30 33 37 40 43 47
Layer ID

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
(%

)

T5-small
GPT2-XL
Llama-2-7B

Figure 3: Percentage of samples where edits are
closer to unrelated neighbours as compared to
paraphrases in the representations space of dif-
ferent models across various select layers. T5-
small, GPT2-XL and Llama-2-7b have 6, 32, 48
layers respectively. The full figure for all layers
can be found in Appendix E.1

0.4 0.2 0.0 0.2 0.4
Model (Layer=2)

0

10

20

30

40

50

Pe
rc

en
ta

ge
(%

)

46.80%

6.40%
10.00%

2.80%

11.00%

0.00%

T5-small
T5-smalledited

GPT2-XL
GPT2-XLedited

LlaMa
LlaMaedited

Figure 4: Percentage of samples where edits are
closer to unrelated neighbours as compared to
paraphrases in the representation space of dif-
ferent models and projector networks. Lower
percentages indicate better performance.

6.1 LEXICAL DOMINANCE

To examine the lexical dominance of representations, we randomly sampled 500 entries from the
Counterfact dataset (see §5). For each entry, we created triplets consisting of an edit prompt, a ran-
domly sampled paraphrase prompt and a neighbouring prompt with high lexical overlap (xi, pi, ni).
These triplets are fed into various models, and representation vectors (x⃗i, p⃗i, n⃗i) from the feed-
forward block of each layer l are extracted for all samples. We select either averaged token represen-
tations or dedicated sentence representation, based on whether a given model offers a specific token
for sentence-level representation. Following extraction, we calculate two sets of pairwise Euclidean
distances: (1) Between edit representations and paraphrase representations: ||x⃗i− p⃗i||2 (2) Between
edit representations and neighbour representations: ||x⃗i − n⃗bi||2. We then compare these distances
to determine if neighbours are closer to the edits than the paraphrases ||x⃗i − p⃗i||2 > ||x⃗i − n⃗bi||2.
Figure 3 displays the percentage of samples where neighbours were closer to the edits.

The findings reveal an intriguing pattern: except for the first layer in most models, the early layers
demonstrate a reduced percentage of samples where neighbours are closer to edits than paraphrases.
However, the trend shifts as we progress through the model’s depth. In the mid-layers, this per-
centage begins to ascend once more, only to descend slightly towards the final layers, albeit with
subtle fluctuations among them. We hypothesize that in the initial layers, token-specific information
remains largely isolated. However, as the input traverses deeper into the model, guided by repeated
attention mechanisms, this information becomes amalgamated across tokens. Moreover, repeated
normalization as demonstrated by Takase et al. (2022) results in smaller changes in weights of an
LLM leading to embedding vectors in the final layers being similar thus only subtle fluctuations are
seen in the percentages.

These results indicate why there is a significant chance of misfire in post-input methods. This also
provides a systematic approach for identifying the optimal layer to introduce PENME integration,
by elucidating the regions within the model’s architecture where lexical dominance exhibits min-
imal influence. Although the projector network approach can be generalized across all layers, as
demonstrated in Appendix E.2, it is advantageous in terms of training time to integrate at points of
minimal influence.

6.2 DISENTANGLED PROJECTION SPACE

In this section, we validate our proposed projection network in its ability to learn a generalized
disentangled representation space where paraphrases are closer to edits as compared to neighbours.
We sample 1500 tuples of edits (ei), paraphrases pi, and their unrelated neighbours nbi (ei, pi, nbi)
from the Counterfact dataset with accompanying input prompts xi and split them into train and test

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

CounterFact zsRE
Method Model ES Loc Para Score ES Loc Para Score
PENME T5-small 1.000 0.787 0.808 0.865 1.000 0.941 0.913 0.951

Llama-2-7b 1.000 0.869 0.906 0.925 1.000 0.987 0.966 0.984
GPT2-XL 1.000 0.847 0.875 0.907 1.000 0.957 0.940 0.966

MELO T5-small 0.850 0.800 0.037 0.562 0.990 0.640 0.986 0.872
GPT2-XL 1.000 1.000 0.020 0.673 1.000 0.004 1.000 0.668

GRACE T5-small 1.000 0.860 0.140 0.667 1.000 0.730 0.993 0.907
Llama-2-7b 1.000 0.997 0.002 0.666 0.120* 0.00* 0.579* 0.233*
GPT2-XL 1.000 0.996 0.003 0.666 0.993* 0.019* 0.017* 0.343*

SERAC T5-small 0.017 0.526 0.010 0.184 0.017 0.526 0.010 0.184
Llama-2-7b 0.992 0.372 0.651 0.672 1.000 0.114 0.357 0.490
GPT2-XL 0.947 0.669 0.408 0.675 0.474 0.003 0.811 0.429

MEMIT Llama-2-7b 0.147 0.149 1.000 0.432 0.402 0.002 1.000 0.468
GPT2-XL 0.785 0.788 0.502 0.692 0.214 0.000 1.000 0.405

FT T5-small 0.955 0.000 0.450 0.468 0.017 0.526 0.010 0.184
Llama-2-7b 0.404 0.393 0.417 0.405 0.569 0.020 0.746 0.445
GPT2-XL 0.968 0.851 0.395 0.738 0.608 0.005 0.889 0.501

Table 1: A comparative analysis of PENME and recent model editing methods on 2000 edits from
the Counterfactual dataset and 1000 edits on zsRE. The metrics are Edit Sucess (ES), Locality (Loc)
and Paraphrase Generalization (Para). *indicates only a subset of 100 is computed.

sets of 1000 and 500 samples respectively. We use the training set to train the projector network
using model representations from layer 2 of each model. To evaluate the network’s performance,
we compare two types of test representations: the original model representations Ml(xi) where xi

is the input prompt and the projected representations Mproj(Ml(xi)). This comparison uses the
experimental method described earlier, allowing us to determine whether the projection network
successfully learns to create a representation space with the desired properties.

The results presented in Figure 4 demonstrate that the projector network, despite not being exposed
to these specific samples during training, effectively learns to distance lexically similar but unrelated
neighbours in comparison to paraphrases. A two-dimensional PCA visualization of the representa-
tion space, illustrating this phenomenon, is provided in Appendix F.2.

For data pairs where neighbours are closer to edits than paraphrases, T5-small exhibits a significant
decrease from 46% percent to 6.4%. Similarly, GPT2-XL shows a reduction of over 7%, and Llama-
2-7b drops to 0%, indicating perfect separability of neighbours and paraphrases.

6.3 MODEL EDITING RESULTS

Table 1 presents the comparative results of PENME and recent model editing methods for 2000 edits
on the Counterfact dataset and 10001 edits on zsRE. PENME demonstrates a highly stable perfor-
mance across editing metrics as compared to other model editing approaches. In particular, PENME
shows high efficacy on locality and generalization compared to other model editing approaches and
has more stable performance across the different models.

GRACE, similar to PENME, demonstrates high edit success rates due to its inherent design. How-
ever, its generalization scores compared to PENME were markedly low, suggesting poor perfor-
mance on edit paraphrases post-editing. GRACE achieved the highest locality scores, with T5-small
at 0.92 and Llama-2-7b nearly perfect at 0.997. The substantial difference between locality and
generalization scores can be attributed to GRACE’s use of a very low distance threshold, resulting
in poor performance on paraphrases but successfully avoiding neighbouring prompt spillover into
edits.

1*Due to system implementation issues with GRACE on EasyEdit (Wang et al., 2023a), we were only able
to compute a 100 sample subset for results with a *.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Threshold

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

GPT2-XL

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Threshold

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ge
ne

ra
liz

at
io

n
&

Lo
ca

lit
y

T5-small

Cosine Sim (Edit to Edit Pairings)
Generalization
Locality

0.5
0.6

0.7
0.8

0.9

Figure 5: Shows the trade-off between generalization and locality performance across different hy-
perparameter settings. The distance threshold τ varies from 0.01 to 0.2 (0.01 increments and τ is
normalized by 100), while the edit-pairing similarity threshold ϕ ranges from 0.5 to 0.9 (0.1 incre-
ments). Higher ϕ values enforce stricter edit similarity requirements. The results showcase the effect
of hyperparameter tuning on the projector network’s learning capacity and overall performance.

SERAC also achieves a high edit success but shows a low and mixed performance for generalization
and locality across models. For T5-small, the approach does not work well as SERAC uses logically
entailed facts ”prompt: TRUE or FALSE” to determine the scope, the original work uses a T5-large
which is significantly better at reasoning.

For GPT2-XL, MEMIT demonstrates moderate effectiveness, achieving an edit success rate of 0.785
and a locality score of 0.788. In contrast, when applied to Llama-2-7b, both the edit success and
paraphrase success rates are relatively low, although the locality score remains high. This discrep-
ancy is likely attributed to challenges arising from MEMIT’s training on the Llama-2-7b model.

7 ABLATIONS

7.1 GENERALIZATION AND LOCALITY

To demonstrate the trade-off between generalization and locality, we conducted an ablation study
by varying the alpha parameter, which modulates the similarity threshold defining an edit’s scope.
Figure 5 presents the results for GPT2-XL and T5-small. The trends observed for GPT2-XL and
Llama-2-7b are similar. Therefore, for clearer visualization, we present the detailed results for
Llama-2-7b separately in Appendix F.1. Setting a low τ value achieves near-perfect locality but poor
generalization. As we incrementally increase the threshold, generalization improves while locality
declines gradually. Generalization values either plateau for larger models (Llama-2-7b, GPT2-XL)
or continue to increase for smaller models (T5-small). Each model exhibits an optimal threshold
where generalization and locality are balanced; these thresholds can be adjusted to suit specific use
cases e.g. high locality to ensure no degradation in the original model.

Figure 5 also illustrates the impact of varying the similarity threshold for edit-to-edit pairings in the
training dataset on the projector network’s learning. Edit-to-edit pairings ϕ which move edits far-
ther away from each other are central to training a robust projector network. For T5-small, training
remains largely stable across all thresholds, with optimal performance at the midpoint (0.70); devi-
ations from this threshold result in decreased overall performance balance between generalization
and locality. In larger models, threshold selection proves critical, as inappropriate values can lead
to training instability, causing early plateauing of generalization and rapid decline in locality. The
threshold value for edit-to-edit pairings ϕ significantly impacts training stability and performance.
Higher thresholds, such as 0.75, result in fewer pairings and lead to unstable training for both Llama-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1000 2000 3000 4000 5000
Number of Edits

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ca

lit
y

an
d

Ge
ne

ra
liz

at
io

n

Llama-2-7B Paraphrase Success
Llama-2-7B Locality
GPT2-XL Paraphrase Success
GPT2-XL Locality
T5 Paraphrase Success
T5 Locality

Figure 6: PENME’s performance in terms of Locality (dotted line) and Generalization (continuous
line) across varying numbers of total edits performed.

2-7b and GPT2-XL models, ultimately resulting in poor performance. Conversely, lower thresholds,
exemplified by 0.6, increase the number of pairings and enhance training stability.

7.2 SCALING EDITS

We evaluate the projection network’s stability under varying numbers of edits using incrementally
larger training sets ranging from 1000 to 5000 edits, with 1000-edit increments per training session.
The results of the experiment are shown in Figure 6. Projector network trained on representations
from T5-small demonstrates lower overall performance in generalization and locality compared to
other models. We hypothesize that this under-performance may be attributed to either the model’s
smaller size, resulting in less robust learned representations, or the fact that it was trained on a more
limited dataset relative to larger, more recent models. Projection networks trained on Llama-2-7b
and GPT2-XL representations exhibit comparable performance levels. Both models show a slight
decrease in generalization and locality performance as the number of edits increases from 1000 to
2000, with minimal decline after that. For T5-small the performance is relatively stable up to 3000
edits after which a more pronounced decline is observed.

Examination of projection network behaviour reveals interesting patterns in generalization and lo-
cality failures based on the varying distances between training edits and their respective paraphrases
and neighbours after the training of the projector network. The varying distances result in different
thresholds for each edit, which can cause errors when the closest edit to a neighbouring example
has a high threshold. To quantify these observations, we employed ROUGE scores in a compara-
tive study of generalization outcomes. Appendix G provides this analysis, offering insights into the
nuances of the learned projection space.

8 CONCLUSION

In this paper, we proposed PENME an adapter-based model editing approach that utilizes a projec-
tion network trained via contrastive learning. PENME explicitly targets the lexical bias present in
representations that causes misfiring of editing scope. Moreover, it used a memory-based storage
system alongside the scoping mechanism for efficient edit retrieval. Empirical evaluations demon-
strated PENME’s superior performance across varying levels of task complexity. On the zsRE
dataset, It achieved impressive generalization and locality scores exceeding 0.90. Notably, when
assessed on the more challenging Counterfact benchmark, the system maintained robust perfor-
mance, attaining scores above 0.80 for both generalization and locality metrics. This performance
on Counterfact is particularly significant given the benchmark’s increased difficulty, underscoring
PENME’s efficacy. In the future, we plan to assess whether a projector, pretrained on a large dataset
to maximize semantic information, could be used as a plug-and-play solution without requiring ad-
ditional training. Moreover, we intend to expand PENME to encompass more scenarios, including
long-form generation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Sri Harsha Dumpala, Aman Jaiswal, Chandramouli Sastry, Evangelos Milios, Sageev Oore, and
Hassan Sajjad. Sugarcrepe++ dataset: Vision-language model sensitivity to semantic and lexical
alterations. arXiv preprint arXiv:2406.11171, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual
and catastrophic forgetting. arXiv preprint arXiv:2401.07453, 2024a.

Akshat Gupta, Dev Sajnani, and Gopala Anumanchipalli. A unified framework for model editing.
arXiv preprint arXiv:2403.14236, 2024b.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 1735–1742. IEEE, 2006.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural
Information Processing Systems, 36, 2024.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 17643–17668. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/3927bbdcf0e8d1fa8aa23c26f358a281-Paper-Conference.pdf.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. arXiv preprint arXiv:2301.09785, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, pp.
18564–18572, 2024.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint
arXiv:2308.08747, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/3927bbdcf0e8d1fa8aa23c26f358a281-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3927bbdcf0e8d1fa8aa23c26f358a281-Paper-Conference.pdf
https://aclanthology.org/W04-1013

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Ja-
son Weston. Key-value memory networks for directly reading documents. arXiv preprint
arXiv:1606.03126, 2016.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. In International Conference on Learning Representations, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831. PMLR, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Domenic Rosati, Robie Gonzales, Jinkun Chen, Xuemin Yu, Yahya Kayani, Frank Rudzicz, and
Hassan Sajjad. Long-form evaluation of model editing. In Kevin Duh, Helena Gomez, and
Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
pers), pp. 3749–3780, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.naacl-long.208. URL https://aclanthology.org/2024.
naacl-long.208.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. On layer normalizations and residual
connections in transformers. arXiv preprint arXiv:2206.00330, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Peng Wang, Ningyu Zhang, Xin Xie, Yunzhi Yao, Bozhong Tian, Mengru Wang, Zekun Xi, Siyuan
Cheng, Kangwei Liu, Guozhou Zheng, et al. Easyedit: An easy-to-use knowledge editing frame-
work for large language models. arXiv preprint arXiv:2308.07269, 2023a.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for
large language models: A survey. arXiv preprint arXiv:2310.16218, 2023b.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. arXiv
preprint arXiv:2305.13172, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 19449–19457,
2024.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? arXiv preprint arXiv:2305.12740, 2023.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020.

12

https://aclanthology.org/2024.naacl-long.208
https://aclanthology.org/2024.naacl-long.208
https://arxiv.org/abs/2302.13971

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DATA CONSTRUCTION AND INFERENCE FOR PENME

The projection network is similar to the feed-forward layers in a transformer as it contains two layers
with ReLU activation in between with the addition of the Batch Normalization layer, a common
element in contrastive learning. The network is trained via contrastive learning which requires a
dataset based on a pair of inputs with positive and negative labels. The algorithm 1 data construction
process.

Algorithm 1 Psuedo Code Data Construction Projector Network
1: Input num overall negative ▷ edit pairing with neighbours of other edits (Optional

hyperparameter)
2: Input threshold edit pairings ▷ edit-to-edit pairings (hyperparameter)
3: Input memory = {} ▷ memory storage
4: Input dataset pairs = [] ▷ dataset for training projector network
5: Input Cos(.,.) ▷ Cosine Sim function
6: Input dataset rows ri = [(xi, yi, [pi1...pij], [nbi1...nbij]), ...]
7: for each ri element in the dataset do
8: for each pij and nbij element in the ri do
9: dataset pairs← positive pairs(xi, pij)

10: dataset pairs← negative pairs(xi, nbij)
11: end for
12: for each rt in the dataset, where i ̸= t do
13: if Cos(xi, xt) > threshold then
14: dataset pairs← negative pairs(xi, xt)
15: end if
16: for each nbij element in rt do
17: memory[i] (← cosine sim(xi, nbtj), negative pairs (xi, nbtj))
18: end for
19: end for
20: end for
21: store← Sort(memory) ▷ in descending order
22: dataset pairs← memory[0 : negative overall samples](xi, ntj)
23: return dataset pairs

Algorithm 2 Inference for LLM with PENME
1: Input Ml(.) ▷ LLM model output at layer l
2: Input Mproj(.) ▷ Projector network
3: Input D(.,.) ▷ Euclidean Distance function
4: Input memory = {(keys(K)=vectors, values(V)=(threshold, output))}
5: Input xt user prompt
6: y,hl ←Ml(xt)
7: actx ←Mproj(hl)
8: selectedKey ←mini(D(actx,Ki)) ▷ compute Euclidean distance between actx and keys in

memory and extract closet key
9: if D(actx, selectedKey) < V [selectedKey][threshold] then

10: return V [selectedKey][output]
11: end if
12: return y

B PARAPHRASES AND NEIGHBOURS DISTANCE ANALYSIS

Table 2 shows the distance between edits and their respective paraphrases and neighbours across
various measurement metrics. From the distances the average paraphrase distance (AvgPD) and av-
erage distances between training and test paraphrases (AvgDTTP), we can see that they are generally
a little farther than the test paraphrases and are on average a bit farther from the edit than train para-
phrases. On the other hand, the average neighbour distance (AvgPN) and average distances between

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Model Measurement Metric Training Set Test Set

Llama-2-7b

AvgPD 0.240 0.254
MinPD 0.0 0.02
MaxPD 0.829 1.59
AvgND 1.436 1.379
MinND 0.803 0.616
MaxND 1.884 1.853
AvgCPFN 0.348 0.893

Training Set vs Test Set
AvgDTTP 0.013
MaxDTTP 1.459
MinDTTP -0.634
AvgDTTN -0.227
MaxDTTN -1.130
MinDTTN 0.0

T5-small

AvgPD 0.409 0.491
MinPD 0.0 0.002
MaxPD 1.375 1.381
AvgND 0.468 0.534
MinND 0.005 0.010
MaxND 1.384 1.386
AvgCPFN 0.193 0.238

Training Set vs Test Set
AvgDTTP 0.018
MaxDTTP 1.273
MinDTTP -1.290
AvgDTTN -0.276
MaxDTTN -1.341
MinDTTN 0.0

GPT2-XL

AvgPD 0.378 0.349
MinPD 0.0 0.01
MaxPD 1.49 1.395
AvgND 1.174 1.092
MinND 0.227 0.368
MaxND 1.709 1.728
AvgCPFN 0.382 0.700

Training Set vs Test Set
AvgDTTP 0.008
MaxDTTP 1.368
MinDTTP -1.046
AvgDTTN -0.148
MaxDTTN -0.856
MinDTTN 0.0

Table 2: Distance analysis of distances between edit and its respective paraphrase and
neighbours. The metrics for measurement include average/max/min paraphrase distance
(AvgPD)(MaxPD)(MinPD), average/max/min neighbour distance (AvgND),(MaxND)(MinND), av-
erage/max/min distances between training and test paraphrase (AvgDTTP)(MaxDTTP)(MinDTTP),
the average distance between farthest edit and closest neighbour (AvgCPFN) and average/max/min
distances between training and test neighbours (AvgDTTN)(MaxDTTN)(MinDTTN)

training and test neighbours (AvgDTTN) show that the test neighbours are a little closer to the edit
as compared to the train neighbours.

C COMPARISON SCOPING MECHANISM: PENME VERSUS MELO AND
GRACE

To demonstrate the improvement in inference time for selecting the appropriate key, we compare
PENME with MELO across various sample sizes of edits, ranging from 50 to 300 in increments of
50 shown in table 3. The results show that PENME outperforms MELO in terms of speed and also
highlight the number of keys forgotten during training due to the design of its scoping mechanism,
as well as the number of entries for which the radius had to be reduced.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Number
of Edits

PENME MELO/GRACE

Runtime (ms) Runtime (ms) Codebook Entries Edits Forgotten Edit Conflict

50 0.024 ± 0.003 0.316 ± 0.090 269 24 21
100 0.115 ± 0.129 0.364 ± 0.050 523 77 66
150 0.188 ± 0.182 0.624 ± 0.082 785 132 114
200 0.279 ± 0.170 1.423 ± 0.180 1048 188 169
250 0.404 ± 0.170 1.681 ± 0.205 1319 254 217
300 0.418 ± 0.125 2.149 ± 1.069 1554 301 268

Table 3: Runtime Performance Comparison of PENME versus MELO. For PENME the number of
Codebook entries is the same as the number of edits.

D EXPERIMENTATION AND IMPLEMENTATION DETAILS

D.1 EXPERIMENTATION SETUP

For our comparative analysis, we contrast against baseline methods such as simple fine-tuning
(FT), alongside advanced approaches drawn from relevant literature. These encompass GRACE
(Hartvigsen et al., 2024; Yu et al., 2024), employing adapter-based editing with a similarity-based
scoping mechanism. SERAC (Mitchell et al., 2022), a multimodal editing approach incorporating
a scoping classifier, memory database, and counterfactual model alongside the target model and
MEMIT (Meng et al., 2022b) an editing approach designed for decoder only model adopts a model-
editing strategy by identifying and updating knowledge-contained model layers’ weight matrices.
Its

In evaluating our approach, we adhere to metrics outlined in section 3. Regarding generalization,
we define a paraphrase as generalized if it aligns with the correct edit and falls below its distance
threshold. For assessing locality, we maintain that locality is preserved when the distance between
matched edits exceeds its threshold. Any other instances are categorized as misfires. It is important
to note that (Hartvigsen et al., 2024; Yu et al., 2024) utilize token F1 Accuracy and (Mitchell et al.,
2022) use a metric based on token probabilities. These metrics are softer in nature which allows for
higher scores.

D.1.1 COMPUTATION RESOURCES

Training for all projector networks is conducted on NVIDIA P100 GPU with 16GB VRAM. A
larger VRAM or RAM capacity is only necessary for the initial extraction of layer representations
from the pre-trained language models. For the evaluation of approaches from relevant literature,
some of which demanded greater computational resources, we employed NVIDIA A100 GPU with
40GB, and 80GB VRAM. All editing approaches where supported are implemented using the default
configurations provided in the Easy-Editor library (Wang et al., 2023a). It is important to note that
not all models are supported across all editing methods. For instance Llama-2-7b is not supported
for MELO.For some models such as T5-small limited support is provided therefore we utilize the
code provided by the papers authors.

The inference pipeline for PENME is given in 2.

D.1.2 HYPERPARAMETERS

For training projector networks we utilize the Adam optimizer. we experiment with various learning
rates 1e1−2, 2e1−2, 3e1−2. we find that a moderate learning rate is required to learn faster while not
overfitting, hence we choose 1e1−2, with a learning rate decay rate of 0.01. All projection networks
are trained for 200 epochs using a batch size of 8192 and an early stopping patience of 8 epochs. For
selecting the margin m in the contrastive learning cost function we ablate on the hyperparameter m
for the GPT2-XL model. The table 4 shows the margin m along with the adjustment to τ for balanced
results for generalization and locality. It can be observed from the table to achieve high-performance
minimum value of 30 needs to be utilized. The higher the the value for m the better the score for
localization. The value chosen is 40 which has the most balanced results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Margin m Threshold Adjustment
τ

Generalization Locality

10 0 0.634 0.831
20 3 0.891 0.880
30 6 0.958 0.948
40 8 0.967 0.977
50 11 0.978 0.965
60 13 0.976 0.986
70 17 0.973 0.976
80 17 0.973 0.976
90 20 0.928 0.986

Table 4: The table shows how the performance changes along with the required threshold adjustment
to τ as margin m in contrastive loss is changed

ZsRE Counterfact

Metric Pair Type Score Precision Recall F1 Value Precision Recall F1

Jaccard Similarity (xi, pij) 0.399 - - - 0.401 - - -
Jaccard Similarity (xi, nbij) 0.086 - - - 0.430 - - -

ROUGE-1 (xi, pij) - 0.321 0.315 0.316 - 0.310 0.325 0.307
ROUGE-1 (xi, nbij) - 0.076 0.087 0.079 - 0.295 0.293 0.290
ROUGE-2 (xi, pij) - 0.189 0.194 0.194 - 0.189 0.198 0.184
ROUGE-2 (xi, nbij) - 0.008 0.008 0.008 - 0.205 0.203 0.201
ROUGE-L (xi, pij) - 0.299 0.294 0.293 - 0.299 0.312 0.295
ROUGE-L (xi, nbij) - 0.070 0.080 0.073 - 0.294 0.292 0.289

Table 5: Comparison between ZsRE and Counterfact for token overlap metrics

D.2 DATA PROCESSING

Counterfact: Each row in the Counterfact consists of an edit prompt, two paraphrase prompts, mul-
tiple neighbourhood prompts and an edit label xi, yi, [p1, p2], [nbi1...nbij]). For the training dataset,
we extract the edit prompt xi, one randomly sampled paraphrase pi and half the neighbourhood
prompts nbij . For creating additional paraphrases for the training set we utilize the extracted edit
prompt and paraphrase prompt as input to ChatGPT and use it to generate three additional para-
phrases for training. We ensure that the generated paraphrase follows the (s, r, o∗) triplet format
that the dataset uses. The test set for locality and generalization compromises of the paraphrase and
neighbours not sampled from the training set.

zsRE: The zsRE dataset comprises of rows containing a sample question, its corresponding new
label, and multiple rephrased questions along with its filtered rephrased questions. We constructed
this dataset following methodologies established in the relevant literature. A balanced subset of
paraphrases are derived from the filtered rephrased questions for training and testing purposes. For
neighbouring samples, we randomly selected an equal number of questions from the NQ dataset for
training and testing while ensuring no overlap in questions.

To highlight the lexicality issue in the datasets, we compute several token overlap metrics between
pairs of (edits, paraphrases) (xi, pij) and (edits, neighbors) (xi, nbij), and present text examples
from both datasets in the table 5 and 6. From the token overlap metrics table, it is evident that
the edit prompt and neighbors show high overlap in Counterfact, whereas the overlap is minimal
in ZsRE. This, coupled with the experiment in section §6.1, highlights the significant challenges
observed in the Counterfact dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Counterfact ZsRE

Edit Paraphrase Neighbour Edit Paraphrase Neighbour
NQ dataset

The twin city
of Cologne is

What is the
twin city of
Cologne? It is

The twin city
of London is

Which river
system con-
tains Laborec?

What river sys-
tem does La-
borec contain?

Where does
the last name
serrano come
from?

Alexander Zi-
noviev works
in the area of

Alexander
Zinoviev’s
domain of
work is

TFred W.
Riggs works in
the area of

Which airport
does Air Sey-
chelles operate
in?

Which airport
is closely
linked to Air
Seychelles?

How many
students attend
chippewa
valley high
school?

The original
language of
Kondura was

The language
of Kondura is

The original
language of
Water was

The country of
origin for Kala
Pul is what?

Which was the
country for
Kala Pul?

”When do
the new sky
sports chan-
nels launch?

Thomas Arne
died in the city
of

Thomas Arne
lost their life at

Bill Brandt
died in the city
of

What label
was responsi-
ble for Wild
World?

What was the
label Wild
World?

Who com-
posed the
music for
avengers infin-
ity war?

Table 6: Random samples from the Counterfact and ZsRE datasets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Layer ID

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
(%

)

T5-small
GPT2-XL
Llama-2-7B

Figure 7: Percentage of samples where edits are closer to neighbours as compared to paraphrases in
the representations space of different models across all layers. T5-small, GPT2-XL and Llama-2-7b
have 6, 32, 48 layers respectively.

E PROJECTOR NETWORK AND LEXICAL DOMINANCE

E.1 LEXICAL DOMINANCE LAYER ANALYSIS

Figure 7 shows the percentage of edits samples where neighbours were closer to the edits for all
models across all layers.

E.2 LAYER-WISE ANALYSIS OF THE PROJECTOR NETWORK

Figure 8 shows how the results for generalization and locality for the T5-small model. The results
suggest that performance remains largely consistent; however, training tends to require more time to
converge at higher layers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Generalization and locality scores for various projector networks trained on layers of T5-
small using 500 samples from Counterfact.

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ge
ne

ra
liz

at
io

n
&

Lo
ca

lit
y

Llama-2-7b

Cosine Sim (Edit to Edit Pairings)
Generalization
Locality

0.5
0.6

0.7
0.8

0.9

Figure 9: Generalization and Locality trade-off a function of varying distance thresholds τ and ϕ

F VISUALIZATIONS

F.1 GENERALIZATION AND LOCALITY LLAMA-2-7B

9 shows generalization and locality trade-off a function of varying distance thresholds τ and ϕ for
Llama-2-7b model.

F.2 PCA

Figures 10 and 11 present the two-dimensional PCA of the model representations and projector
network representations for the Llama-2-7b and GPT2-XL models, respectively. The visual demon-
strates that neighboring prompts are closely aligned with edit prompts, while edit prompts also show

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.3 0.2 0.1 0.0 0.1 0.2

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Llama-2-7b

Edits
Neighbours
Paraphrases

60 40 20 0 20 40

40

20

0

20

Llama-2-7b Projection Network

Edits
Neighbours
Paraphrases

Figure 10: Generalization and locality scores for various project or networks trained on layers of
T5-small using 500 samples from Counterfact.

1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

GPT2-XL

Edits
Neighbours
Paraphrases

40 30 20 10 0 10 20 30

20

10

0

10

20

30

GPT2-XL Projection Network
Edits
Neighbours
Paraphrases

Figure 11: Two dimensional PCA on GPT2-XL model representation and the trained projejctor
network.

proximity to other edit prompts within the original model representations. The projector network,
however, effectively mitigates this effect by learning a disentangled representation space.

G ERROR ANALYSIS PROJECTOR NETWORK

To investigate the reasons behind failures in PENME, we performed a comprehensive error analysis
across our models. Our findings indicate that contrastive learning significantly mitigates lexical

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

dominance. However, due to the inherent variability in lexical pattern distribution within the dataset,
there remains potential for further optimization in the projection phase.

The training process of the projector network does not lead to uniform distances between each edit,
its paraphrases and neighbours for all samples. This paired with individually varying thresholds
for edits leads to misfires. To illustrate this problem, we format the results of each dataset sample
for automatic inspection. For all paraphrases and neighbours in the test set, we extract the nearest
key/edit, the ground truth edit/key, the distance to the nearest key/edit, and the distance to the ground
truth edit/key. Table 7 shows rouge scores (Lin, 2004) for two possible scenarios i.e. success and
failure of generalization and locality. We also show separately the score for where generalization
failure occurs due to distance not meeting the set threshold. Moreover, since failures can occur in
similarities with unrelated edits we show locality and paraphrase failure with both ground truth edit
and matched edit.

For cases of successful generalization, we observe a substantial uni-gram overlap and a moderate
bi-gram overlap between the edited sentences and their paraphrases. The ROUGE-L scores are
similarly high for these metrics, indicating that the sentences likely share similar tokens in the same
sequence. This implies that the attention mechanism produces similar representations, leading to a
high degree of similarity. For locality success, we can see that although there is significant token
overlap between neighbours and their target edits, the neighbours had higher similarity with some
other edits with low token overlap, this means our approach of pushing neighbouring sentences
farther away is able to generalize to unseen neighbours.

In cases of generalization failure, the ROUGE scores for paraphrases compared with the ground
truth are slightly lower than those observed in successful instances. Although there is some token
overlap with the target edits, the matched edits exhibit even less token overlap. On the other hand for
locality failure, we can see that the prediction case token overlap is higher as compared to locality
success, moreover, the overlap is higher as compared to ground truth edits. Thus lexicality based
similarity is not the issue but rather the varying thresholds, which in some cases are large leads to
misfires.

H LIMITATIONS

Training the projection network in PENME using the contrastive learning scheme is sensitive, re-
quiring tuning of hyperparameters such as the learning rate and contrastive loss margin. Effective
network training also hinges on the careful construction of training data, which requires careful
consideration of the number of edit pairings with other dataset neighbours and edit-to-edit pairings.
Finally, the thresholds for the memory-based retrieval system, though dynamically determined from
training data, can vary across different models, necessitating adjustments to the alpha (a) parameter
for each model.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Model Rouge-1
2.5% CI

Rouge-1
97% CI

Rouge-2
2.5% CI

Rouge-2
97% CI

RougeL
2.5% CI

RougeL
97% CI

Generalization Success
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.629 0.639 0.382 0.394 0.608 0.619
GPT2-XL 0.655 0.666 0.403 0.417 0.642 0.653

Generalization Failure (prediction)
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.133 0.173 0.056 0.091 0.125 0.162
GPT2-XL 0.122616 0.160 0.056 0.090 0.117 0.153

Generalization Failure (ground truth)
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
Llama-2-7b 0.488 0.518 0.270 0.296 0.460 0.489
GPT2-XL 0.501 0.527 0.284 0.310 0.474 0.500

Locality Success (prediction)
T5-small 0.100 0.104 0.011 0.013 0.096 0.099
Llama-2-7b 0.100 0.104 0.011 0.013 0.096 0.099
GPT2-XL 0.095 0.100 0.011 0.013 0.092 0.095

Locality Success (ground truth)
T5-small 0.100 0.104 0.011 0.013 0.096 0.099
Llama-2-7b 0.487 0.518 0.269 0.296 0.459 0.489
GPT2-XL 0.176 0.217 0.036 0.059 0.173 0.211

Locality Failure (prediction)
T5-small 0.566 0.577 0.390 0.403 0.562 0.574
Llama-2-7b 0.259 0.277 0.148 0.164 0.247 0.264
GPT2-XL 0.254 0.273 0.147 0.164 0.244 0.262

Locality Failure (ground truth)
T5-small 0.203 0.212 0.052 0.058 0.197 0.206
Llama-2-7b 0.201 0.206 0.049 0.053 0.195 0.201
GPT2-XL 0.207 0.218 0.052 0.059 0.201 0.212

Generalization Distance Failure
T5-small 1.00 0.95 1.05 0.706 0.65 0.75
GPT2-XL 0.522 0.551 0.279 0.309 0.484 0.512
Llama-2-7b 0.495 0.579 0.252 0.324 0.455 0.529

Table 7: ROUGE Evaluation Scores

21

	Introduction
	Related Work
	Problem Setting: Model Editing
	Projector Editor Networks for Model Editing (PENME)
	Projection Network
	Key-Value Memory

	Experimental Setup
	Evaluation
	Lexical Dominance
	Disentangled Projection Space
	Model Editing Results

	Ablations
	Generalization and Locality
	Scaling Edits

	Conclusion
	Data Construction and Inference for PENME
	Paraphrases and Neighbours Distance Analysis
	Comparison Scoping Mechanism: PENME versus MELO and GRACE
	Experimentation and Implementation Details
	Experimentation Setup
	Computation Resources
	Hyperparameters

	Data Processing

	Projector Network and Lexical Dominance
	Lexical Dominance Layer Analysis
	Layer-Wise Analysis of the Projector Network

	Visualizations
	GENERALIZATION AND LOCALITY Llama-2-7b
	PCA

	Error Analysis Projector Network
	Limitations

